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Abstract—p-Toluenesulfonylmethyl isocyanide (TosMIC) is used for the first time as the isonitrile component in a diastereoselective
Passerini reaction with sugar-derived aldehydes to afford products in moderate to good yields (40–90%) and selectivities (30–90%
de’s).
� 2006 Elsevier Ltd. All rights reserved.
Multi-component reactions1 play a prominent role in
synthetic organic chemistry as dependable tools for
ready access to combi-libraries in short steps. Amongst
these reactions, the Passerini2 and Ugi3 multi-compo-
nent reactions occupy an important position. The Passe-
rini reaction, which was discovered about 80 years ago,
is recognized as one of the most powerful multi-compo-
nent reactions with wide applications in the synthesis of
diverse compounds.4 Recently, we published5 the p-tolu-
enesulfonylmethyl isocyanide (TosMIC) mediated syn-
theses of C-oxazole and C-pyrrole derivatives as base
surrogates, viz, C-nucleosides. This work motivated us
to extrapolate the synthetic utility of TosMIC as an iso-
nitrile input in a diastereoselective Passerini reaction. To
the best of our knowledge, TosMIC6 has most com-
monly been used in heterocyclic ring construction, in
particular, of oxazole and pyrrole moieties, but less7 in
asymmetric Passerini reactions. In recent times, chiral
catalyst assisted enantioselective Passerini coupling
reactions have attracted much attention.8,9 Herein, we
report the first use of TosMIC as an isonitrile compo-
nent in a diastereoselective Passerini reaction using su-
gar-derived aldehydes (Scheme 1). The advantages of
using TosMIC stem from the fact that the products, be-
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sides being diversely functionalized, also bear an addi-
tional methylene group which can serve as a handle
for further manipulation.

Initially, a two-component Passerini reaction (P-2CR)
was performed between known10 1,2-O-isopropylidene-
3-O-methyl-a-DD-xylo-pentodialdo-1,4-furanose (1) and
TosMIC (4) in the presence of several Lewis acid cata-
lysts such as Yb(OTf)3 and ZrCl4, however, the opti-
mum yield of 1a (22%, Scheme 1 and Table 1, entry 1)
was obtained under Seebach’s reaction conditions11

(TiCl4/TMSCl/CH2Cl2/0 �C-rt). Amide 1a was identi-
fied from its spectral data, the 1H NMR spectrum of
which revealed characteristic methylene protons at d
4.68 as a broad doublet (J = 6.7 Hz) and the aryl methyl
at d 2.49 as a singlet. The diastereomeric excess (de) was
measured from the 1H NMR based on the relative inte-
gration of the diastereomeric protons. For instance, 1a
revealed H-3 at d 3.85 as a doublet for the major diaste-
reoisomer with an integration of 0.74H and at d 3.82 for
the minor diastereoisomer with an integration of 0.26H.
Likewise, the protons due to the methoxy group also
resonated at different chemical shifts, that is, at d 3.47
and d 3.44 as singlets with the same integral ratio sug-
gesting a de of 48%. The H-5 proton of the minor isomer
resonated at d 3.77 as a doublet (J = 4.2 Hz) with an
integration of 0.26H while the same proton appeared
at d 3.68 as a doublet (J = 5.0 Hz) with an integration
of 0.74H for the major diastereoisomer. The remainder
of the protons resonated at their expected chemical
shifts. Subsequently, the diastereoselective Passerini
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Table 1. Two-component Passerini reaction (P-2CR) of sugar-derived
aldehydes with TosMIC under Lewis acid conditionsa

Entry Substrate Productb Yieldc ded

1 1 1a 22 48
2 2 2a 25 54
3 3 3a 59 30

a All the reactions were conducted as described in the general experi-
mental procedure in the reference section.

b All the products were thoroughly characterized from their spectral
data.

c Isolated yields.
d de calculated from the 1H NMR spectra.
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reaction12 of the sugar-derived aldehydes 1,2:3,4-di-O-
isopropylidene-a-DD-galacto-hexodialdo-1,5-pyranose13 2
(Table 1, entry 2) and 1-O-methyl 2,3-O-isopropylid-
ene-a-DD-lyxo-pentodialdo-1,5-furanose9 3 (Table 1,
entry 3), under the above-mentioned reaction conditions,
afforded products 2a (25%) and 3a (59%), respectively.
Analogously, the de’s of 2a and 3a were established
based on the relative integration of the diastereomeric
protons in their 1H NMR spectra.
Further, to establish milder reaction conditions compat-
ible with substrates containing acid sensitive protective
groups, a three-component Passerini coupling reaction
(P-3CR) was performed using 1, TosMIC 4, and organic
acids 10a–c (PhCOOH, 1,2,3,4-di-O-isopropylidene-a-
DD-galacturonic acid14 and mandelic acid, Table 2). How-
ever, it was found that there was no substantial enhance-
ment in selectivity when a chiral acid 10b was used
(Table 3, entry 1). In addition, O-methyl-(-)-mandelic
acid was also tested as an inducing agent for the Passe-
rini reaction between aldehydes 1 and 4; however, no
product was detected under these reaction conditions.
Additionally, the Passerini reaction of 1 was also at-
tempted in the protic solvent MeOH15 at reflux, but 1a
could only be obtained in low yield. This may be attrib-
uted to the poor stability of TosMIC under these reac-
tion conditions.

Having established optimal reaction conditions for a
mild P-3CR, several aldehydes 2, 3, and 5–9 when
exposed to the same reaction conditions behaved
uniformly to afford products 2b, 3b, 5b–8b, 9b, and



Table 2. Three-component Passerini reaction (P-3CR) between alde-
hyde 1, various acids and TosMIC

Entry Acid Yield (%)

1 PhCOOH, 10a 45
2 1,2,3,4-Di-O-isopropylidene-

a-DD-galacturonic acid, 10b

35

3 (S)-Mandelic acid, 10c No reaction

Table 3. Three-component Passerini reaction (P-3CR) between sugar-
derived aldehydes, organic acids and TosMICa

Entry Aldehyde Acid(s) Product(s)b Yieldc ded

1 1 10a 1b 45 52
10b 1c 35 50

2 2 10a 2b 95 28
3 3 10a 3b 73 35
4 5 10a 5b 80 69
5 6 10a 6b 73 28
6 7 10a 7b 39 90
7 8 10a 8b 69 25
8 9 10a 9b 48 41

10b 9c 43 54

a All the reactions were conducted as described in the general experi-
mental procedure in the reference section.

b All the products were thoroughly characterized by their spectral data.
c Isolated yields.
d de calculated from 1H NMR spectra.
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9c, respectively (Table 3). Particular mention needs to be
made about 1,2-O-isopropylidene-(R)-glyceraldehyde 6,
a reluctant substrate under Lewis acid conditions, how-
ever, which underwent a facile three-component Passe-
rini reaction to afford 6b in 73% yield and 28% de
(Table 3, entry 5). The diastereomeric excess of all the
products was established by 1H NMR analysis. For in-
stance, the 1H NMR spectrum of 1b displayed the char-
acteristic H-1 signal at d 5.98 as a doublet (J = 3.7 Hz)
for the major diastereoisomer while the same proton ap-
peared at d 5.87 for the minor diastereoisomer with an
integral ratio of 3.16:1.0 (de 52%). H-5 appeared at d
5.50 and at d 5.28 for the minor and major diastereoiso-
mers, respectively, with the same integral ratio, while the
remainder of the protons appeared at their expected
chemical shifts. The major isomer of 1b {mp = 179 �C;
[a]D �61.03 (c 0.25, CHCl3)} was also isolated as a sin-
gle diastereoisomer whose 1H NMR revealed H-1 at d
5.96 as a doublet (J = 3.0 Hz) and the characteristic
H-5 proton at d 5.29 as a doublet (J = 9.1 Hz) with
the rest of the protons resonating at their expected
chemical shifts. The absolute stereochemistry at the
newly created carbon in 1b was assigned as ‘R’ (major
isomer, LL-ido) based on the coupling constant
(J5,4 = 9.1 Hz). By analogy, the stereochemistry at the
newly created center for the major diastereoisomers of
2b and 3b was assigned as ‘R’ since the starting alde-
hydes were drawn from DD-sugars. Similarly, the de val-
ues of all the other products (5b–8b, 9b and 9c) were
calculated based on the integrations of the diastereo-
meric protons and the stereochemistry at the newly cre-
ated center (major isomer) was assigned as being anti to
the existing center.16
In summary, TosMIC was introduced for the first time
as a novel isonitrile component in diastereoselective
Passerini reactions. Several sugar-derived aldehydes
were compatible under these reaction conditions to
afford diverse products as mandelamides17,18 in moder-
ate to good yields and in moderate to good selectivities.
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